\(\int \frac {x^4 (A+B x^2)}{(a+b x^2)^{5/2}} \, dx\) [587]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 114 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {a (A b-a B) x}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {(4 A b-7 a B) x}{3 b^3 \sqrt {a+b x^2}}+\frac {B x \sqrt {a+b x^2}}{2 b^3}+\frac {(2 A b-5 a B) \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{2 b^{7/2}} \]

[Out]

1/3*a*(A*b-B*a)*x/b^3/(b*x^2+a)^(3/2)+1/2*(2*A*b-5*B*a)*arctanh(x*b^(1/2)/(b*x^2+a)^(1/2))/b^(7/2)-1/3*(4*A*b-
7*B*a)*x/b^3/(b*x^2+a)^(1/2)+1/2*B*x*(b*x^2+a)^(1/2)/b^3

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {466, 1171, 396, 223, 212} \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {(2 A b-5 a B) \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{2 b^{7/2}}-\frac {x (4 A b-7 a B)}{3 b^3 \sqrt {a+b x^2}}+\frac {a x (A b-a B)}{3 b^3 \left (a+b x^2\right )^{3/2}}+\frac {B x \sqrt {a+b x^2}}{2 b^3} \]

[In]

Int[(x^4*(A + B*x^2))/(a + b*x^2)^(5/2),x]

[Out]

(a*(A*b - a*B)*x)/(3*b^3*(a + b*x^2)^(3/2)) - ((4*A*b - 7*a*B)*x)/(3*b^3*Sqrt[a + b*x^2]) + (B*x*Sqrt[a + b*x^
2])/(2*b^3) + ((2*A*b - 5*a*B)*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/(2*b^(7/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 466

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x
*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p + 1))), x] + Dist[1/(2*b^(m/2 + 1)*(p + 1)), Int[(a + b*x^2)^(p + 1)*E
xpandToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d))/(a + b*x^2)]
- (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[
m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])

Rule 1171

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQ
uotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2,
x], x, 0]}, Simp[(-R)*x*((d + e*x^2)^(q + 1)/(2*d*(q + 1))), x] + Dist[1/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1
)*ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &&
 NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a (A b-a B) x}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {\int \frac {a (A b-a B)-3 b (A b-a B) x^2-3 b^2 B x^4}{\left (a+b x^2\right )^{3/2}} \, dx}{3 b^3} \\ & = \frac {a (A b-a B) x}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {(4 A b-7 a B) x}{3 b^3 \sqrt {a+b x^2}}+\frac {\int \frac {3 a (A b-2 a B)+3 a b B x^2}{\sqrt {a+b x^2}} \, dx}{3 a b^3} \\ & = \frac {a (A b-a B) x}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {(4 A b-7 a B) x}{3 b^3 \sqrt {a+b x^2}}+\frac {B x \sqrt {a+b x^2}}{2 b^3}+\frac {(2 A b-5 a B) \int \frac {1}{\sqrt {a+b x^2}} \, dx}{2 b^3} \\ & = \frac {a (A b-a B) x}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {(4 A b-7 a B) x}{3 b^3 \sqrt {a+b x^2}}+\frac {B x \sqrt {a+b x^2}}{2 b^3}+\frac {(2 A b-5 a B) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{2 b^3} \\ & = \frac {a (A b-a B) x}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {(4 A b-7 a B) x}{3 b^3 \sqrt {a+b x^2}}+\frac {B x \sqrt {a+b x^2}}{2 b^3}+\frac {(2 A b-5 a B) \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{2 b^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.89 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {x \left (-6 a A b+15 a^2 B-8 A b^2 x^2+20 a b B x^2+3 b^2 B x^4\right )}{6 b^3 \left (a+b x^2\right )^{3/2}}+\frac {(2 A b-5 a B) \text {arctanh}\left (\frac {\sqrt {b} x}{-\sqrt {a}+\sqrt {a+b x^2}}\right )}{b^{7/2}} \]

[In]

Integrate[(x^4*(A + B*x^2))/(a + b*x^2)^(5/2),x]

[Out]

(x*(-6*a*A*b + 15*a^2*B - 8*A*b^2*x^2 + 20*a*b*B*x^2 + 3*b^2*B*x^4))/(6*b^3*(a + b*x^2)^(3/2)) + ((2*A*b - 5*a
*B)*ArcTanh[(Sqrt[b]*x)/(-Sqrt[a] + Sqrt[a + b*x^2])])/b^(7/2)

Maple [A] (verified)

Time = 2.94 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.80

method result size
pseudoelliptic \(\frac {-x \left (-\frac {10 x^{2} B}{3}+A \right ) a \,b^{\frac {3}{2}}-\frac {4 x^{3} \left (-\frac {3 x^{2} B}{8}+A \right ) b^{\frac {5}{2}}}{3}+\frac {5 B \sqrt {b}\, a^{2} x}{2}+\left (b \,x^{2}+a \right )^{\frac {3}{2}} \left (A b -\frac {5 B a}{2}\right ) \operatorname {arctanh}\left (\frac {\sqrt {b \,x^{2}+a}}{x \sqrt {b}}\right )}{\left (b \,x^{2}+a \right )^{\frac {3}{2}} b^{\frac {7}{2}}}\) \(91\)
default \(B \left (\frac {x^{5}}{2 b \left (b \,x^{2}+a \right )^{\frac {3}{2}}}-\frac {5 a \left (-\frac {x^{3}}{3 b \left (b \,x^{2}+a \right )^{\frac {3}{2}}}+\frac {-\frac {x}{b \sqrt {b \,x^{2}+a}}+\frac {\ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{b^{\frac {3}{2}}}}{b}\right )}{2 b}\right )+A \left (-\frac {x^{3}}{3 b \left (b \,x^{2}+a \right )^{\frac {3}{2}}}+\frac {-\frac {x}{b \sqrt {b \,x^{2}+a}}+\frac {\ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{b^{\frac {3}{2}}}}{b}\right )\) \(146\)
risch \(\frac {B x \sqrt {b \,x^{2}+a}}{2 b^{3}}+\frac {2 A \sqrt {b}\, \ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )-\frac {5 B a \ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{\sqrt {b}}-\frac {a \left (A b -B a \right ) \left (\frac {\sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} b -2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}}{3 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}}-\frac {\sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} b -2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}}{3 a \left (x +\frac {\sqrt {-a b}}{b}\right )}\right )}{2 b}-\frac {a \left (A b -B a \right ) \left (-\frac {\sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} b +2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}}{3 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}}-\frac {\sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} b +2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}}{3 a \left (x -\frac {\sqrt {-a b}}{b}\right )}\right )}{2 b}-\frac {\left (3 A b -5 B a \right ) \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} b +2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}}{2 b \left (x -\frac {\sqrt {-a b}}{b}\right )}-\frac {\left (3 A b -5 B a \right ) \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} b -2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}}{2 b \left (x +\frac {\sqrt {-a b}}{b}\right )}}{2 b^{3}}\) \(480\)

[In]

int(x^4*(B*x^2+A)/(b*x^2+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/(b*x^2+a)^(3/2)/b^(7/2)*(-x*(-10/3*x^2*B+A)*a*b^(3/2)-4/3*x^3*(-3/8*x^2*B+A)*b^(5/2)+5/2*B*b^(1/2)*a^2*x+(b*
x^2+a)^(3/2)*(A*b-5/2*B*a)*arctanh((b*x^2+a)^(1/2)/x/b^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 333, normalized size of antiderivative = 2.92 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\left [-\frac {3 \, {\left ({\left (5 \, B a b^{2} - 2 \, A b^{3}\right )} x^{4} + 5 \, B a^{3} - 2 \, A a^{2} b + 2 \, {\left (5 \, B a^{2} b - 2 \, A a b^{2}\right )} x^{2}\right )} \sqrt {b} \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right ) - 2 \, {\left (3 \, B b^{3} x^{5} + 4 \, {\left (5 \, B a b^{2} - 2 \, A b^{3}\right )} x^{3} + 3 \, {\left (5 \, B a^{2} b - 2 \, A a b^{2}\right )} x\right )} \sqrt {b x^{2} + a}}{12 \, {\left (b^{6} x^{4} + 2 \, a b^{5} x^{2} + a^{2} b^{4}\right )}}, \frac {3 \, {\left ({\left (5 \, B a b^{2} - 2 \, A b^{3}\right )} x^{4} + 5 \, B a^{3} - 2 \, A a^{2} b + 2 \, {\left (5 \, B a^{2} b - 2 \, A a b^{2}\right )} x^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) + {\left (3 \, B b^{3} x^{5} + 4 \, {\left (5 \, B a b^{2} - 2 \, A b^{3}\right )} x^{3} + 3 \, {\left (5 \, B a^{2} b - 2 \, A a b^{2}\right )} x\right )} \sqrt {b x^{2} + a}}{6 \, {\left (b^{6} x^{4} + 2 \, a b^{5} x^{2} + a^{2} b^{4}\right )}}\right ] \]

[In]

integrate(x^4*(B*x^2+A)/(b*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

[-1/12*(3*((5*B*a*b^2 - 2*A*b^3)*x^4 + 5*B*a^3 - 2*A*a^2*b + 2*(5*B*a^2*b - 2*A*a*b^2)*x^2)*sqrt(b)*log(-2*b*x
^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) - 2*(3*B*b^3*x^5 + 4*(5*B*a*b^2 - 2*A*b^3)*x^3 + 3*(5*B*a^2*b - 2*A*a*b^
2)*x)*sqrt(b*x^2 + a))/(b^6*x^4 + 2*a*b^5*x^2 + a^2*b^4), 1/6*(3*((5*B*a*b^2 - 2*A*b^3)*x^4 + 5*B*a^3 - 2*A*a^
2*b + 2*(5*B*a^2*b - 2*A*a*b^2)*x^2)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) + (3*B*b^3*x^5 + 4*(5*B*a*b^2
 - 2*A*b^3)*x^3 + 3*(5*B*a^2*b - 2*A*a*b^2)*x)*sqrt(b*x^2 + a))/(b^6*x^4 + 2*a*b^5*x^2 + a^2*b^4)]

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 675 vs. \(2 (105) = 210\).

Time = 8.41 (sec) , antiderivative size = 675, normalized size of antiderivative = 5.92 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=A \left (\frac {3 a^{\frac {39}{2}} b^{11} \sqrt {1 + \frac {b x^{2}}{a}} \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{3 a^{\frac {39}{2}} b^{\frac {27}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 3 a^{\frac {37}{2}} b^{\frac {29}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}} + \frac {3 a^{\frac {37}{2}} b^{12} x^{2} \sqrt {1 + \frac {b x^{2}}{a}} \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{3 a^{\frac {39}{2}} b^{\frac {27}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 3 a^{\frac {37}{2}} b^{\frac {29}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}} - \frac {3 a^{19} b^{\frac {23}{2}} x}{3 a^{\frac {39}{2}} b^{\frac {27}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 3 a^{\frac {37}{2}} b^{\frac {29}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}} - \frac {4 a^{18} b^{\frac {25}{2}} x^{3}}{3 a^{\frac {39}{2}} b^{\frac {27}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 3 a^{\frac {37}{2}} b^{\frac {29}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}}\right ) + B \left (- \frac {15 a^{\frac {81}{2}} b^{22} \sqrt {1 + \frac {b x^{2}}{a}} \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{6 a^{\frac {79}{2}} b^{\frac {51}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 6 a^{\frac {77}{2}} b^{\frac {53}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}} - \frac {15 a^{\frac {79}{2}} b^{23} x^{2} \sqrt {1 + \frac {b x^{2}}{a}} \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{6 a^{\frac {79}{2}} b^{\frac {51}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 6 a^{\frac {77}{2}} b^{\frac {53}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}} + \frac {15 a^{40} b^{\frac {45}{2}} x}{6 a^{\frac {79}{2}} b^{\frac {51}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 6 a^{\frac {77}{2}} b^{\frac {53}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}} + \frac {20 a^{39} b^{\frac {47}{2}} x^{3}}{6 a^{\frac {79}{2}} b^{\frac {51}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 6 a^{\frac {77}{2}} b^{\frac {53}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}} + \frac {3 a^{38} b^{\frac {49}{2}} x^{5}}{6 a^{\frac {79}{2}} b^{\frac {51}{2}} \sqrt {1 + \frac {b x^{2}}{a}} + 6 a^{\frac {77}{2}} b^{\frac {53}{2}} x^{2} \sqrt {1 + \frac {b x^{2}}{a}}}\right ) \]

[In]

integrate(x**4*(B*x**2+A)/(b*x**2+a)**(5/2),x)

[Out]

A*(3*a**(39/2)*b**11*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3
*a**(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a)) + 3*a**(37/2)*b**12*x**2*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt
(a))/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3*a**(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a)) - 3*a**19*b**(
23/2)*x/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3*a**(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a)) - 4*a**18*b
**(25/2)*x**3/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3*a**(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a))) + B*
(-15*a**(81/2)*b**22*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(6*a**(79/2)*b**(51/2)*sqrt(1 + b*x**2/a) + 6
*a**(77/2)*b**(53/2)*x**2*sqrt(1 + b*x**2/a)) - 15*a**(79/2)*b**23*x**2*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqr
t(a))/(6*a**(79/2)*b**(51/2)*sqrt(1 + b*x**2/a) + 6*a**(77/2)*b**(53/2)*x**2*sqrt(1 + b*x**2/a)) + 15*a**40*b*
*(45/2)*x/(6*a**(79/2)*b**(51/2)*sqrt(1 + b*x**2/a) + 6*a**(77/2)*b**(53/2)*x**2*sqrt(1 + b*x**2/a)) + 20*a**3
9*b**(47/2)*x**3/(6*a**(79/2)*b**(51/2)*sqrt(1 + b*x**2/a) + 6*a**(77/2)*b**(53/2)*x**2*sqrt(1 + b*x**2/a)) +
3*a**38*b**(49/2)*x**5/(6*a**(79/2)*b**(51/2)*sqrt(1 + b*x**2/a) + 6*a**(77/2)*b**(53/2)*x**2*sqrt(1 + b*x**2/
a)))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.40 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {B x^{5}}{2 \, {\left (b x^{2} + a\right )}^{\frac {3}{2}} b} - \frac {1}{3} \, A x {\left (\frac {3 \, x^{2}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} b} + \frac {2 \, a}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} b^{2}}\right )} + \frac {5 \, B a x {\left (\frac {3 \, x^{2}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} b} + \frac {2 \, a}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} b^{2}}\right )}}{6 \, b} + \frac {5 \, B a x}{6 \, \sqrt {b x^{2} + a} b^{3}} - \frac {A x}{3 \, \sqrt {b x^{2} + a} b^{2}} - \frac {5 \, B a \operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right )}{2 \, b^{\frac {7}{2}}} + \frac {A \operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right )}{b^{\frac {5}{2}}} \]

[In]

integrate(x^4*(B*x^2+A)/(b*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

1/2*B*x^5/((b*x^2 + a)^(3/2)*b) - 1/3*A*x*(3*x^2/((b*x^2 + a)^(3/2)*b) + 2*a/((b*x^2 + a)^(3/2)*b^2)) + 5/6*B*
a*x*(3*x^2/((b*x^2 + a)^(3/2)*b) + 2*a/((b*x^2 + a)^(3/2)*b^2))/b + 5/6*B*a*x/(sqrt(b*x^2 + a)*b^3) - 1/3*A*x/
(sqrt(b*x^2 + a)*b^2) - 5/2*B*a*arcsinh(b*x/sqrt(a*b))/b^(7/2) + A*arcsinh(b*x/sqrt(a*b))/b^(5/2)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.98 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {{\left ({\left (\frac {3 \, B x^{2}}{b} + \frac {4 \, {\left (5 \, B a^{2} b^{3} - 2 \, A a b^{4}\right )}}{a b^{5}}\right )} x^{2} + \frac {3 \, {\left (5 \, B a^{3} b^{2} - 2 \, A a^{2} b^{3}\right )}}{a b^{5}}\right )} x}{6 \, {\left (b x^{2} + a\right )}^{\frac {3}{2}}} + \frac {{\left (5 \, B a - 2 \, A b\right )} \log \left ({\left | -\sqrt {b} x + \sqrt {b x^{2} + a} \right |}\right )}{2 \, b^{\frac {7}{2}}} \]

[In]

integrate(x^4*(B*x^2+A)/(b*x^2+a)^(5/2),x, algorithm="giac")

[Out]

1/6*((3*B*x^2/b + 4*(5*B*a^2*b^3 - 2*A*a*b^4)/(a*b^5))*x^2 + 3*(5*B*a^3*b^2 - 2*A*a^2*b^3)/(a*b^5))*x/(b*x^2 +
 a)^(3/2) + 1/2*(5*B*a - 2*A*b)*log(abs(-sqrt(b)*x + sqrt(b*x^2 + a)))/b^(7/2)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\int \frac {x^4\,\left (B\,x^2+A\right )}{{\left (b\,x^2+a\right )}^{5/2}} \,d x \]

[In]

int((x^4*(A + B*x^2))/(a + b*x^2)^(5/2),x)

[Out]

int((x^4*(A + B*x^2))/(a + b*x^2)^(5/2), x)